A Load Balancing Framework: Micro to Macro

Wesley Miaw
University of North Carolina, Chapel Hill
Dept. of Computer Science
wesley@cs.unc.edu

January 11, 2004

1 Introduction

The past decade has seen a move away from supercomputer architectures towards collections of
powerful microcomputers. This change has been occurring across all industries, from business to
government to academia. There have been several reasons for this migration, not the least of which
is cost. It is more cost efficient to make use of many small cheap resources than to build and use a
single expensive large resource.

However, it is more complicated to coordinate the use of and maximize the efficiency of a group of
resources. Load balancing is one concept often used to achieve this goal. With load balancing, jobs
are given access to resources (e.g. processing time, bandwidth) out of a pool of resources provided
by the system. The objective of load balancing is to maximize the performance of the system.
Performance may mean different things depending on the system concerned; minimizing job delay
and maximizing resource use are two examples of performance measurements.

This paper presents a general framework describing the concept of load balancing in the context of
three different fields of computer science: microprocessor architecture, web server clusters, and grid
computing. Each field approaches the problem of load balancing in their own way, but I will show
how the underlying structures of all these approaches are consistent with a general framework.
Researchers attempting to design new load balancing schemes will benefit from organizing their
scheme along the lines described by the framework.

The papers used to present information from each of the three fields are Hyper-Threading Technol-
ogy Architecture and Microarchitecture [16], EQUILOAD: a load balancing policy for clustered web
servers [8], and On Partitioning Dynamic Adaptive Grid Hierarchies [13].

Section 2 presents some background knowledge of the three fields covered for readers who are
unfamiliar with those areas of work. Section 3 discusses previous load balancing approaches in
the three fields and the field-specific issues that must be addressed by any load balancing scheme.
Section 4 presents the general load balancing framework, looks at how recent work fits into that
framework, and how that work addresses the field-specific issues involved. Section 5 highlights the
framework and presents some benefits of designing schemes with the framework in mind.

2 Technology Background

This section provides some background on the technologies used in the general load balancing
framework discussion. Section 2.1 describes the basic problem at the root of inefficient processor
usage, and looks at the impact caching, context switching, and out-of-order execution have on this
problem. Section 2.2 first defines web cluster job requests (i.e. HTTP requests) and the role of
server-side caching. Section 2.3 defines the term grid computing, explains its objectives, and also
explains how programs can exploit grid technology.

2.1 Microprocessor Architecture

Maximizing the performance and efficiency of a microprocessor centers around ensuring that an
instruction is executed each clock cycle. If something is preventing the processor from executing
an instruction, then no work will be done that cycle and a gap is introduced into the workflow.
This gap is referred to as a bubble. Bubbles are introduced when a processor cannot immediately
execute the next instruction of a thread.

To understand why a thread may stall and introduce a bubble, it is important to understand how
a process and its threads interact with information. A process is a single executing instance of
a program, and may contain many threads that share information. This shared information may
be used for communication between threads, but it also includes the program code containing
the processor instructions. If for some reason the currently executing thread cannot access the
information it needs, the processor cannot execute that thread’s next instruction.

For example, the MIPS machine instruction 1w $1, (100)$2 will load into register 1 the data at
the address stored in register 2 offset by 100. If the data at that address is located in RAM or on
disk, the processor will be idle while the data is fetched. This problem is independent of application
level issues such as locks or synchronization, which must be handled by the operating system.

Three approaches used to address this problem and improve processor performance are caching,
context switching, and out-of-order execution. Context switching and out-of-order execution are
loosely related to load balancing, and are almost like an inverse form of load balancing. Instead
of distributing individual jobs (i.e. threads and instructions) over multiple resources, multiple jobs
are distributed over a single resource to ensure that resource is always operating at full efficiency.
Caching is used to support context switching and out-of-order execution because when the infor-
mation required by a thread can be retrieved faster, it is easier to keep the processor running at
full efficiency.

2.1.1 Caching

The thread executing on a processor may need data in the processor registers to perform a com-
putation. If that data is not currently available in a processor register, the data must be brought
in from memory or disk. When this occurs, the processor must suspend execution until the data
is fetched. Fetching this data can take an extremely long time with respect to the processor clock
speed. Since the processor cannot perform any work during this time, a bubble will be introduced
into the workflow and performance will suffer.

Caching data closer to the processor will reduce the delay experienced by the thread while the

data is being fetched. This will in turn reduce the length of workflow bubbles. Caching may also
reduce the frequency of workflow bubbles when used in conjunction with out-of-order execution, as
described in Section 2.1.3.

Unfortunately, memory capacity and access latency are directly related: the greater the memory
capacity, the greater the access latency.

Driving memory at high clock speeds requires fast memory chips and short signal paths. Manufac-
turing chips for such high performance is expensive because only a small percentage of produced
chips can be reliably run at the high speeds required. The high cost and need for short signal paths
is the reason faster memory must be used in smaller quantities.

In contrast, magnetic storage can be produced in large quantities. Magnetic storage is orders of
magnitude slower than the small caches, but at the same time orders of magnitude greater in terms
of storage capacity. A thread requiring data stored on disk will have to wait a very long time,
relative to data stored in fast memory, for that data to arrive at the processor.

As a compromise, system architects use several levels of cache memory to keep as much data as
close to the processor as possible. A small amount of very fast memory will be placed near the
processor, and data will be looked for in this cache first. A second slower, but larger, cache will be
looked in next. And so on.

2.1.2 Context Switching

Context switching is one approach used to keep the processor busy during a workflow bubble.
The idea is to switch execution from one thread to another. While the first thread is waiting for
data, the second thread can execute and keep the processor busy. However, there is an overhead
associated with context switching due to processor state management.

When a context switch occurs, the current processor state for one thread must be saved and
the processor state for the new thread must be loaded. This processor state contains all of the
information relevant to a thread’s execution, such as register values and the currently executing
instruction. Without this information, the processor will not know where to resume execution of a
thread, and it will not know what data was being used by a thread when it was switched out.

If saving and loading the state was not necessary, or could be done at negligible processor clock cycle
cost, then context switching would be enough to keep processors busy assuming a sufficient number
of threads. Unfortunately, the overhead of context switching is high enough to have a significant
impact on performance. The cost can only be lessened by executing many thread instructions
between context switches, and this cannot be guaranteed as each thread’s work profile! is unique.

Context switching also has a negative effect on cache performance. In the majority of cases, the new
active thread will reference different data than the previous thread. Since the cache now contains
data for the previous thread, the new thread will experience many cache misses. When the next
context switch occurs, the cache will again contain data unrelated to the new active thread. Thus,
although the goal of context switching is to avoid situations involving lengthly workflow bubbles,

' A thread’s work profile describes its execution behavior. I/O intensive threads are characterized by short bursts
of computation between long periods of data retrieval. CPU intensive threads will be the opposite with short bursts
of I/O between long periods of computation. Most threads fall somewhere in between these two extremes and will
behave differently at different points in time.

context switching itself may introduce bubbles due to cache misses.

2.1.3 Out-of-order Execution

Another approach used to keep processors busy while waiting for data is out-of-order execution.
With out-of-order execution, the instructions of a single thread are reordered so that while one
instruction is waiting for data, other instructions that do not need that data can be executed.
This is only possible when it is known that those other instructions are independent of the waiting
instruction.

Two instructions are independent of each other if the register written in one instruction is not used
by the second instruction. For example, the sequence of instructionsx = y * 3andz = y + 5are
independent because the first does not reference z and the second does not reference x. Therefore,
it does not matter in what order the two instructions are executed. However, the sequence of
instructions x = y * 3 and z = x + 5 are dependent, and changing the order of execution will
result in a different value for z.

Caching helps when reordering instructions because the sooner an instruction can retrieve the data
it requires, the sooner a dependent instruction can be executed. If it only takes one clock cycle
to fetch cached data, only one independent instruction needs to be executed to avoid a workflow
bubble. On the other hand, if it takes one hundred clock cycles to fetch the required data, one
hundred instructions independent of the waiting instruction must be executed to avoid the bubble.

The problem with out-of-order execution is that most program instructions are dependent on previ-
ous program instructions, and register values will differ depending on how you reach an instruction.
For example, the following code involves a branch:

ify=5then{x=a;y=b}else {X=b;P=7};Z=X*y;

If the first branch is taken, z = a * b. If the second branch is taken, z = b * 5. Branch prediction
is something the processor does to try and predict if the first or second branch will be executed.
If the processor’s prediction is correct, it may be able to execute instructions out-of-order. In this
case, the instruction p = 7 could be executed independent of the other instructions, but only if the
processor correctly predicts the second branch.

Out-of-order execution can be used to improve performance by preventing potential workflow bub-
bles, but its efficacy will be limited by problems like instruction dependencies and incorrect branch
prediction.

2.2 Web Servers

Web server performance is measured in requests satisfied per second and request response time.
The more requests a server can process each second, the more users the service can support. Shorter
response times mean a higher quality of service. In order to understand how servers process requests,
it is important to understand a little bit about the HI'TP protocol and document caching.

2.2.1 HTTP Requests

A web client, such as a browser, sends requests to a web server using the HT'TP protocol. A typical
request contains the path and filename of a document on the server. The contents of that document
are sent back to the client. In the case of HTML documents, references to additional documents,
such as images, may be included in the content of the requested document. The client will then
also request the referenced documents.

The request process described above is a simplistic view of what may actually happen when an
HTTP request is serviced. Although everything appears to be a document request to the client, in
many cases the document does not exist but is instead dynamically constructed in response to the
request. Constructing the requested content may require accessing data from many locations and
performing expensive computations. Complicated situations like this obviously require more time
and resources and will have a negative impact on web server performance.

2.2.2 Server-side Caching

Regardless of whether a document is dynamically constructed or not, caching the data used to
generate the document can have a dramatic improvement on response time and requests per second.
Rather than a server retrieving data from slow disk or across the network, data may be kept in
memory on the server for swift access. Keeping the commonly requested data items in memory
means the majority of requests can be processed without going to disk or the network.

The problem with caching is of course the cache size. Fast memory is orders of magnitude more
expensive than comparably sized disks, and smaller amounts of memory are more quickly addressed
by the computer. In addition, the majority of web servers today use 32-bit processors which limits
memory address space size to 4GB. The recent push towards 64-bit processors increases the address
space size, but hardware is still incapable of supporting the several hundred gigabytes, or terabytes,
that a 64-bit address space could reference.

2.3 Grid Computing

Grid computing is a relatively new concept that has grown out of widely-distributed research
programs such as SETI@home [14], a program that makes use of volunteered computing resources
to analyze data in the Search for Extraterrestrial Intelligence. In this case, that data consists of
radio signals recorded by the Arecibo dish radio telescope. Rather than using a single, expensive
supercomputer to quickly analyze the gathered data, SETT uses thousands of inexpensive computers
to analyze independent chunks of the data. The computation time of these computers is donated
by people from all over the world who are interested in SETT.

The general idea behind grid computing, implemented by many programs like SETI@home, is to
aggregate distributed computational resources and present them as a single service with a common
interface. The grid itself is a collection of resources connected by a network and made available
to users and programs. On a small scale, a grid may consist of dozens of workstations at a single
physical location. A large grid, on the other hand, may be constructed of several smaller grids or
clusters at different organizations from across the globe [17].

The performance of a grid itself is somewhat hard to quantify, as performance also depends on

the specific client application. However, any application will generally try to minimize the total
wall clock computation time by making efficient resource decisions. In order to understand how
wall clock computation time is minimized, one needs to understand how grids differ from other
architectures in terms of resources and parallelism.

2.3.1 Computational Resource Sharing

Grid computing is different from clusters or other forms of computer resource sharing and aggrega-
tion because a grid computing infrastructure is more arbitrary and ad hoc. Traditional approaches
to building a computing resource infrastructure involve specifying hardware, software, and commu-
nication requirements. Any such infrastructure is targeted at a specific application or service, and
typically under the control of a single entity.

In contrast, the resources used in grid computing may span across many organizations and may
be geographically separated. Different portions of the grid will be under the control of different
organizations who make their resources available, as a service, to users of the grid.

Access to resources is provided by implementing a grid service interface. Users of the grid must
program to that interface to exploit the grid’s resources. Globus [10] is one of the more popular
grid development environments. The Globus Toolkit provides the framework for resource moni-
toring, discovery, and management by providing features such as SOAP? message security, OGSI?
protocols, and file transfer.

Since the resources made available by a grid are of such an ad hoc and arbitrary nature, it is
necessary to dynamically allocate and manage the available resources based on service requirements
and client application needs. However, unlike clusters, each node is independently responsible for
managing its own resources. This makes resource allocation and management much more difficult,
as there is no central coordination point able to make informed decisions.

2.3.2 Distributed Process Parallelism

Given access to grid resources, the issue then becomes how to optimize computation parallelism.
The grid itself has no real knowledge of the applications it will execute. It is the responsibility of
the client application to break computations into independent chunks suitable for processing on
grid nodes. The grid software will then distribute those computations across the many nodes, in
the manner requested by the application.

A real example of process parallelism can be seen in how the NC BioGrid [6] uses NCBI BLAST, a
gene sequencing analysis program [7]. Jobs are distributed across the grid by copying the BLAST
executable and a gene sequence input file to the nodes. Each node receives a different input file
with data independent of all other input files. After a node completes its analysis and returns its
results, a new job is sent to the free node.

2SOAP is an open XML-based protocol for exchanging information in a decentralized and distributed environ-
ment. [15]

30GSI, or the Open Grid Services Infrastructure, provides the features required by a grid service. Some of these
features are service invocation and security interfaces. [11]

3 Previous Load Balancing Approaches

Before presenting the load balancing framework, it is important to look at current approaches to
load balancing in the three areas this paper is concerned with. The approaches described below are
thread-level parallelism in microprocessors, clustered web servers, and manual grid partitioning.
While these approaches are important and do have a positive impact on performance, there is still
room for improvement.

3.1 Microprocessor Thread-level Parallelism

Thread-level parallelism is the practice of executing multiple threads at the same time. Three
different methods used to support thread-level parallelism are multiprocessor systems, chip mul-
tiprocessing, and time-slice multiprocessing. In the first two methods, job distribution is fairly
simple: individual threads are multiplexed over multiple physical processor resources. The third
method ends up separating many threads into discrete blocks of instructions, and multiplexing
those blocks onto a single processor.

3.1.1 Multiprocessor Systems

Multiprocessor systems are systems with more than one physical processor. Making use of more
physical processors allows a single system to execute multiple threads at the same time. However,
supporting multiple processors does require special hardware support. The processor itself may
have to undergo minor design changes to support the notion of shared memory. Other changes
include additional processor connection pins on the mainboard, communication chips with support
for multiple buses and processors, and bus architectures that are shared or duplicated.

All of that means a multiprocessor system will be more expensive and more complex than a single
processor system. Overall system performance will improve since multiple threads can execute in
parallel, but at the individual processor level, the hardware is not being used more efficiently. Using
multiple physical processors does not address the problem of workflow bubbles or reduce the cost of
context switching. In fact, the coordination of multiple processors introduces additional overhead
so that doubling the number of physical processors will not double the performance.

3.1.2 Chip Multiprocessing

Chip multiprocessing is an attempt to reap the benefits of a multiprocessor system at a reduced cost.
Rather than increasing the number of physical processors in a system and duplicating mainboard
resources, something that comes at some cost, chip multiprocessing places two microprocessors on
a single die. Hardware requirements for chip multiprocessing are similar but less extensive than for
multiprocessors, as the hardware must still be aware of the atypical processor configuration, but
the two processors share a single connection point to the mainboard.

While chip multiprocessing is arguably a better approach to increasing performance per processing
chip than full multiprocessor systems, the cost of designing, fabricating, and using these chips
is still higher than that of traditional single processor systems. The single connection point is
a performance bottleneck since communication through this point must be shared and managed.

Plus, the problems found in multiprocessor systems and single processor systems, such as workflow
bubbles and context switching overhead, are still present under this architecture.

3.1.3 Time-slice Multithreading

Time-slice multithreading approaches the problem of efficiency in a different manner than multipro-
cessor systems and chip multiprocessing. Rather than changing hardware to improve performance,
time-slice multithreading changes software to make better use of available resources.

The idea is to force a context switch between threads at fixed time intervals and also whenever
an event occurs that will result in long latencies, such as a cache miss. The benefits and cost of
using time-slice multithreading (which is used by almost all modern systems both for efficiency and
multiprogramming®) are discussed in Section 2.1.2.

3.2 Clustered Web Servers

Clustered web servers group several hosts together to collectively satisfy more requests per second
than could be satisfied by a single host. This clustering is transparent to a web client, who is
unaware of the cluster and sees only a single host. This illusion is necessary so that the client
does not need to be aware of all the participating hosts when sending requests. It also allows an
organization to control request distribution to reach a desired level of performance and quality of
service.

3.2.1 Multiple Hosts as One

To make the entire cluster function as a single web server, it is necessary to replicate applications
and data across all hosts. Each host must run a copy of any applications a client may interact with
so a client will not be bound to a specific host when sending requests. This replication scheme may
appear at many levels. For example, an application may appear as a single server, but in reality
sales functionality might be handled by one set of hosts, while customer support functionality is
handled by a different set.

Implementing a replication scheme means that the data needed to process a request must be
available to any host. In some cases this is done by replicating the data on each host, just as the
applications are replicated. Another option is to keep data in a central repository shared by all
hosts, such as a database server. For static data, managing the data is not difficult regardless of
the approach. However, if client requests may change data, then changes must be synchronized
across all hosts.

Sometimes, it is possible to avoid the complications of mutable data by permanently associating a
client with a specific host in the cluster. This is only possible if the mutable data is only relevant
to one client and does not need to be shared with the other hosts. If the mutable data does impact
behavior for other clients, then this association is not possible. Permanently associating clients

4Multiprogramming is a rudimentary form of parallel processing in which several programs are run at the same
time on a uniprocessor. Since there is only one processor, there can be no true simultaneous execution of different
programs. Instead, the operating system executes part of one program, then part of another, and so on. To the user
it appears that all programs are executing at the same time. [12]

with specific hosts sometimes causes a problem for load balancing since it may be very difficult
or impossible to accurately predict the load generated by one client. If load cannot be predicted,
established associations may end up overloading some hosts while other hosts are left idle.

3.2.2 Multiplexing Requests

Ensuring load is evenly distributed across the cluster’s hosts is important for maximizing the
performance of a distributed web server. Any distribution scheme must first evaluate the resource
requirements of a request, and second identify the best host for processing that request. It is
the responsibility of the distributor to use these two bits of information to maximize the cluster’s
performance.

A distributor is a system that sits between the clients and the cluster and is responsible for as-
sociating incoming requests with cluster hosts. Sometimes the distributor truly hides the cluster
from client applications by acting as a proxy®. Other times, the distributor will associate a client’s
request to a specific host, and it is the client’s responsibility to directly communicate with the
assigned host.

There are three primary types of request distribution: DNS-based, dispatcher-based, and server-
based [9].

DNS-based This distribution scheme places the responsibility of distributing requests on the
DNS server for the cluster hosts. Each time a client requests the IP address of the web server, the
DNS server returns one of many possible IP addresses, choosing which host it would like the client
to send requests to. Five different clients requesting the IP address of www.cs.unc.edu may be
given five different IP addresses. Since the client and the client’s local DNS server will cache this
returned IP address, this effectively associates that client with that physical host until the cached
value expires.

Although the DNS server can be smart about picking the next IP address to return based on its
knowledge of current server load, it has no knowledge of the requests the client will end up sending
to that address. Even worse, once the DNS server returns an IP address, it has no control over
future use of the address since it will be cached at the client and possibly at intermediate servers.

Dispatcher-based Where DNS-based dispatching schemes make use of many IP addresses, a
dispatcher-based scheme publicizes only one IP address: the address of the dispatcher. Clients
send all requests to the dispatcher, which forwards them to the cluster hosts for processing. The
dispatcher acts as a proxy for the cluster.

This proxy scheme must address the issues of connection management and data forwarding. Since
all connections between clients and the cluster hosts run through the dispatcher, state must be
maintained for the duration of communication. This will limit the number of concurrent connections
because there are only so many port numbers available for use by the dispatcher. Likewise, since
all data must be forwarded through the dispatcher, it may become a bottleneck in the network.
Managing connection state and forwarding data does introduce some overhead.

A proxy manages communication between two systems.

Regardless of those problems, a dispatcher-based scheme does provide an organization with more
control than a DNS-based scheme because each request may be managed individually. The dis-
patcher also has more knowledge than a DNS server because it can have knowledge of both current
server load and of the requests, since all requests are forwarded through the dispatcher.

Server-based A server-based distribution scheme is a combination of the DNS-based and dispatcher-
based schemes. As with the DNS-based scheme, clients are initially given the IP address of one host
in the cluster, but any cluster host may redirect incoming requests to a different host for processing.

Under this scheme, the DNS server may be very ignorant of the cluster servers and requests when
returning IP addresses. The cluster hosts, who have knowledge of their current load and the request,
and possibly knowledge of other hosts’ load, can redirect requests as necessary.

3.3 Grid Partitioning Schemes

Grid computing is a relatively new area of research, and as such there has not been a lot of
established work on grid partitioning schemes. Given a set of available grid nodes with different
levels of computational power, the problem is to figure out how jobs should be distributed over the
grid nodes to minimize the total parallel computation time. Minimizing total computation time
also means minimizing the overhead of communication and synchronization between nodes.

The majority of current grid applications are manually partitioned, placing the burden of maximiz-
ing performance and minimizing computation time on the developer. Manual partitioning obviously
introduces problems. The resulting code will be specific to one grid infrastructure, and will only be
as optimized as the developers are able to make it. More experienced or knowledgeable developers
may be able to better optimize or use different optimization approaches. Manual partitioning also
cannot adapt to changes in the grid infrastructure or changes in grid resource availability during
runtime.

4 A Load Balancing Framework

Previous approaches to load balancing microprocessor resources, distributed web servers, and grids
give us some insight into what functions a general load balancing framework must provide to
maximize performance and minimize cost. These functions are job partitioning, job distribution,
resource management, and a client interface.

Microprocessor thread-level parallelism partitions jobs by thread, distributes threads across the
available resources, includes new logic for managing the resources, and provides physical pathways
and hardware instructions for use by the operating system. Clustered web servers are similarly
defined, with HTTP requests instead of threads, physical servers for its resources, and a dispatcher
as its interface.

Currently there are no established load balancing techniques for grid technology, and client applica-
tions and grids depend on customized algorithms for executing work units. However, the proposed
framework can be applied to grid computing to create a load balanced grid. Such a load balancing
scheme is described by Dynamic Adaptive Grid Partitioning.

10

This framework outlines the minimal functional requirements that any load balancing scheme must
address. Without accurate and efficient job partitioning and distribution, the benefits of load bal-
ancing cannot be maximized and in some cases attempting to load balance with poor job manage-
ment will have a negative impact on overall system performance. The same applies to management
of the physical resources used by the system. The last consideration, a client’s interface with the
load balanced system, does not have as much to do with performance as it does with usability. if
a load balanced system is not easy to use, it will have limited application and users will be slow to
adopt it.

4.1 Job Partitioning

Classifying job requests is important for grouping jobs into different groups representative of the
type and amount of resources the job requires. At one extreme, each job can be associated with
the specific set and quantity of resources it needs to complete. However, such fine-grained parti-
tioning can introduce prohibitive overhead and may itself require a significant amount of dedicated
resources. At the other extreme, all jobs can be placed into the same group. This will basically
result in random distribution since no job is seen as any different from another, and the benefits of
load balancing cannot be exploited to their full effect.

Hyper-threading, EQUILOAD, and Dynamic Adaptive Grid Partitioning partition job requests in
increasingly complex ways.

4.1.1 Hyper-threading Partitioning

A hyper-threading capable processor simply treats each thread individually, and performs no spe-
cial grouping of threads. Multiple threads are then executed simultaneously on a single physical
processor without performing any context switching. Since the processor resources are shared
among the multiple threads, this is similar to chip multiprocessing with the benefits of time-slice
multithreading and without the costs associated with context switching.

4.1.2 EquiLoad Partitioning

EQUILOAD is a dispatcher-based scheme for distributed web servers that assumes document con-
tent size is highly correlated with the request processing time, regardless of the specific resources
required to generate the content. This assumption is based on research in web server workload
characterization®. Given knowledge of the response size distribution, EQUILOAD will partition the
the response size histogram into intervals of equal load. Each interval is assigned to one of the
cluster hosts.

This partitioning is illustrated in Figure 1, which is based on workload traces from the 1998 World
Soccer Cup web site”. In this example, there are four hosts in the cluster. Since it is assumed
that the load generated by a request is highly correlated with the response size, the goal is to
partition the requests into four intervals that will generate equal total load. This is done using
phase-type distributions. A phase-type distribution represents random variables through a mixture

5The EQUILOAD paper cites [1, 2, 3, 4].
"Data available at http://researchsmp2.cc.vt.edu/cgi-bin/reposit /search.pl?details=YES&detailsoffset=135

11

of exponentials and is consistent with a Markov chain. (It is the exponential nature that results in
the curves seen in Figure 1.) A Markov chain is a sequence of random values where the probability
of a value at a time ¢ depends on the value at time ¢-1. Each of the resulting intervals is assigned
to one of the four hosts. All requests that generate a response size in interval 7 are satisfied by host
i.

»

- Phase-type fitting for 1st interval
Phase-type fitting for 2nd interval

Phase-type fitting for 3rd interval
Phase-type fitting for 4th interval

Response
Size

Number of requests in each bin

Host 1 Host 2 Host 3 Host 4

Figure 1: Fitting N = 4 intervals of the size distribution with individual phase-type distributions.

This behavior introduces some request size homogeneity into the request queues and will improve
response time, but this partitioning scheme does present some problems. Choosing the partition
boundaries is important because bad choices will create unbalanced load on the cluster servers.
Additionally, as workload characteristics change over time, the partitions must be changed to
match. Ensuring that partitions are up-to-date and accurately represent equal load can be very
difficult.

4.1.3 Dynamic Adaptive Grid Partitioning

This grid partitioning scheme, DAGP, represents a multi-dimensional grid by a one-dimensional
recursive ordered index space. In simpler terms, a two-dimensional map representing an arbitrary
organization of the grid would be partitioned into squares of equal area. The partitions are then
numbered 1 to n, where n is the total number of partitions. If a partition requires additional refine-
ment because it is capable of performing additional computations in a single time step, then this
process is repeated within that partition. A partition will be marked for refinement or for recom-
bination with its neighbors if its performance falls outside some margin of error. The numbered
partitions are then listed in some order.

Figures 2 and 3 illustrate the conversion from a two-dimensional representation of a grid to its
corresponding one-dimensional representation. Recall that the two-dimensional map of grid nodes
is some arbitrary arrangement that may or may not have a relationship to the nodes physical or
logical locations in the grid. The two-dimensional map shown in Figure 3 was first partitioned into
sixteen squares enumerated 0 through 15. The four center squares were further partitioned and
recursively enumerated 0 through 15. This refinement means those center squares are contributing
more resources to the computation than the unrefined edge squares.

12

Once the two-dimensional representation has been partitioned, those partitions must be rearranged
into a one-dimensional representation. There are many possible ways to order the 28 final partitions
in the one-dimensional representation. Morton order and Peano-Hilbert order are two space-filling
curves® that might be used to construct the ordering. These space-filling curves are shown applied
over a 4x4 map in Figure 2.

Applying the Morton order curve to the partitions in Figure 3 builds the one-dimensional linear
representation {0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15}. The four refined partitions have the
Morton order curve applied to them as well, and the resulting order is recursively inserted into the
above representation. The final one-dimensional linear representation is {0 1 4 {0 1 4 56} 2 3
{2367} 78 {8912 13} 12 13 {10 11 14 15} 11 14 15},

Applying the Peano-Hilbert order is done in a similar fashion, and results in the one-dimensional
linear representation {0 1 {0 1 5 4} 4 8 12 13 {8 12 13 9 10 14 11 15} 14 15 11 7 {7 6
2 3} 2 3}.

Once the grid has been partitioned, jobs can be distributed over the grid by assigning a compu-
tation to each partition (i.e. by assigning a computation to each ‘number’ in the one-dimensional
representation).

Morton Order Peano-Hilbert Order

Figure 2: Two possible space-filling curves.

4.1.4 Job Partitioning Analysis

There is very little involved in partitioning jobs for hyper-threading because threads naturally
lend themselves to the idea of a job. This is partially because the operating system already views
threads as jobs and can distribute them over physical processors. But also because hardware has
very limited knowledge of the task it is trying to complete since its view of threads is so low-level
(i.e. at the instruction level). If the processor hardware tried to maintain more detailed information
about the threads, the added overhead and circuitry would impair performance.

EQUILOAD, on the other hand, does maintain information about its requests by continually mon-
itoring and adjusting its partitions. This is possible because EQUILOAD has a high-level view of
all the requests coming in and all of the responses being returned. Unlike hyper-threading, where

8Space-filling curves perform a one-to-one locality-preserving mapping from multi-dimensional space to one-
dimensional space.

13

{014{0145)23{2367}78{891213}1213{10 11 14 15} 11 14 15} (Morton)
{01{0154}481213{81213910 14 11 15} 14 15 11 7 {7 6 2 3} 2 3} (Peano-Hilbert)

Figure 3: Composite representation of space-filling curves over the DAGH.

the hardware forgets a thread as soon as it is switched out, EQUILOAD can remember everything
it has previously seen. All of this state is much easier and cheaper to manage in software than in
hardware.

DAGP has the the most complicated partitioning management system due to the distributed and
unpredictable nature of the grid and its applications. After each time increment in the parallel
computation, a regriding process is done where partitions are refined or rejoined to update DAGP’s
knowledge and partitioning of the grid. The decision to refine or rejoin partitions will be based on
whatever criteria is applicable to the computation. Example criteria might be total computation
time or total inter-node data communication. A partition that was refined in a previous time
increment may now need to be rejoined at