
Implementation of a Real-Time Software-only Image
Smoothing Filter for a Block-transform Video Codec

Wesley F. Miaw
Lawrence A. Rowe

Computer Science Division-EECS
University of California

Berkeley, CA 94720

Jun 17, 2002

Abstract

The JPEG compression standard is a popular image format. However, at high compression ratios JPEG compression, which uses
block-transform coding, can produce blocking artifacts, or artificially introduced edges within the image. Several post-process-
ing algorithms have been developed to remove these artifacts. This paper describes an implementation of a post-processing
algorithm developed by Ramchandran, Chou, and Crouse (RCC) which is fast enough for real-time software-only video appli-
cations.

The original implementation of the RCC algorithm involved calculating thresholds to identify artificial edges. These calcula-
tions proved too expensive for use in real-time software-only applications. We replaced these calculations with a linear scale
approximating ideal threshold values based on a combination of peak signal-to-noise ratio calculations and subjective visual
quality. The resulting filter implementation is available in the widely-deployed Open Mash streaming media toolkit.

1. Introduction

One of the most attractive new technologies enabled by the
Internet is real-time video conferences. The ability to stream
high quality video and audio for collaborative purposes has
until recently been cost prohibitive because of the infrastruc-
ture and hardware required. The Internet and advancing tech-
nology have made it possible to use existing infrastructure with
software and relatively cheap hardware to produce high qual-
ity real-time video and audio.

However, a single high quality video stream requires a large
amount of bandwidth. For this reason, video streams are often
compressed before transport. Block transform algorithms are
widely used for streaming media (e.g. Motion-JPEG, MPEG,
and H.26x). At high compression ratios (corresponding to low
bit rates) the image quality of a decoded block transform stream
noticeably degrades. One way the image degrades is through
the artificial introduction of blocking artifacts. The solution is
to apply a smoothing filter on block edges after the image is
decoded.

The problem is to find a practical implementation of a smooth-
ing filter. There are many algorithms which can remove block-
ing artifacts but they are too slow for real-time video which
requires up to 30 frames per second. Ramchandran, Chou, and
Crouse published an algorithm1 that addressed this problem.
Their algorithm to be fast enough for real-time applications.

We implemented the Ramchandran, Chou, and Crouse
deblocking algorithm in the Open Mash streaming media
toolkit2. The Mbone tools, including the video streaming tool
vic, are widely used around the world for a variety of real-time
streaming audio and video applications. Since users of Open
Mash applications stream video at low bit rates and high com-
pression ratios, improving video quality is important. How-
ever, any algorithm used to improve video quality must pro-
vide acceptable performance along with heuristics for applica-
tion.

This paper describes an implementation of the Ramchandran,
Chou, and Crouse (RCC) algorithm. This implementation pro-
vides a noticeable reduction in blocking artifacts at up to 30
frames per second on a consumer level CPU. The original RCC
algorithm proved too slow for use in real-time applications.
Consequently, the most time consuming calculations were re-
placed by heuristics. The remainder of the paper is organized
as followed. Section 2 describes the implementation of the
deblocking algorithm. Section 3 provides a performance evalu-
ation of the filter, including both run time performance and
image quality comparisons. Section 4 presents conclusions and
directions for future work.

2. Implementation

This section describes the smoothing filter performed on block
boundaries, the selection of the visual threshold value that de-
termines how the smoothing filter behaves on pixels, and heu-

ristics to decide when to apply the filter. Both the visual thresh-
old selection and the heuristics are different than the approach
suggested by Ramchandran, Chou, and Crouse.

2.1 The Smoothing Algorithm
JPEG compression breaks an image into 8x8 blocks and com-
presses the blocks individually. For the purposes of this dis-
cussion, we will refer to the pixel in column i, row j of block n
as p

n
[i,j].

The basic idea behind the RCC algorithm is to compare pixels
across block borders for artifacts and reduce the difference
between the pixel values. The implementation of this algo-
rithm begins by comparing the two pixels above and the two
pixels below the horizontal block borders and smoothing their
values together. The same computation is done on the two pix-
els to the left and the two pixels to the right of the vertical
block borders. Since there are no blocks adjacent to the edge
of the image, those pixels are not smoothed. Figure 1 displays
an image consisting of nine 8x8 blocks and indicates which
pixels are smoothed across the block borders.

More specifically, the pixels adjacent to each horizontal bor-
der are processed as follows. First, the difference between ad-
jacent pixels are calculated. Let the vertical difference between
pixels be defined as follows (See Figure 2):

v_diff_above = p
1
[1,7] - p

1
[1,8]

v_diff_boundary = p
1
[1,8] - p

2
[1,1]

v_diff_below = p
2
[1,1] - p

2
[1,2]

The value of v_diff_boundary is compared to a threshold value
t. If |v_diff_boundary| ≤ t, the two pixels are considered part of
an artificial discontinuity introduced by compression. Other-
wise, the two pixels are considered part of an actual disconti-
nuity in the image. The two border pixels are altered by the
following equations, where the visual_threshold value repre-
sents the maximum pixel difference value that cannot be de-
tected by the human eye.

If |v_diff_boundary| ≤ t then:
p1[1,8] = p1[1,8] - α * v_diff_boundary
p2[1,1] = p2[1,1] + α * v_diff_boundary

where

α = (t - visual_threshold) / (2 * t)

The RCC algorithm suggests the pixel values be modified even

if they are considered part of an actual discontinuity in order to
reduce the blockiness introduced by compression while main-
taining the appearance of the discontinuity. The RCC algorithm
uses the following equations to modify pixels that are part of
an actual discontinuity.

If |v_diff_boundary| > t then:
p

1
[1,8] = p

1
[1,8] - α * t

p
2
[1,1] = p

2
[1,1] + α * t

The general idea is to reduce the difference between pixels in
artificial discontinuities to below the visual_threshold value and
to slightly reduce the difference between pixels in actual
discontinuities. However, these calculations created problems
for video streams transmitted in sequential image blocks as il-
lustrated in Figure 3a. For such a video stream, vic will receive
individual blocks of the image over a relatively long period of
time. As each block is received, it is added to an image memory
buffer and the incomplete image is displayed to the viewer.
However, when the renderer code receives these intermediate
images, it has no way of recognizing that the image is incom-
plete. As a result, the boundary between the image blocks re-
ceived and the area not yet received is identified as an actual
discontinuity. Modifying the pixels at this boundary is incor-
rect behavior, and would blur pixels in the middle of the image
with the surrounding gray color. Because subsequently received
image blocks are inserted into this modified image, this error
resulted in vertical and horizontal lines across the entire frame
(see Figure 3b) and also in blurred text when character edges
were located at block boundaries.

The renderer code modifies the original image because many
block-transform video codecs send future frames as block dif-
ferentials from the previous frame. These block differentials
are inserted into the memory buffer of the previous frame. It is

Figure 1. Smoothing pixels across block borders.

Figure 2. Calculating the vertical difference between pixels.

more efficient to reapply the algorithm to only the changed
blocks and not the entire frame. Modifying the original data
allows us to do this, but results in the incorrect behavior de-
scribed above.

To correct this problem, we changed the algorithm so that it
does not modify the pixel values at actual discontinuities. This
kept the boundary between the area received and the area not
yet received distinct, removed the problem of blurred text, and
also resulted in an image of higher visual quality.

At this point, the values of v_diff_above and v_diff_below are
recalculated as new_diff_above and new_diff_below. This re-
calculation is necessary since the pixel values of p

1
[1,8] and

p
2
[1,1] may have changed. If the initial difference calculations

were zero, but the new calculations are not, we should also
smooth p

1
[1,7] and p

2
[1,2]. In that case, we set p

1
[1,7] equal to

the average of p
1
[1,7] and p

1
[1,8], and set p

2
[1,2] equal to the

average of p
2
[1,1] and p

2
[1,2].

If v_diff_above = 0 and new_diff_above ≠ 0 then:
p

1
[1,7] = (p

1
[1,7] + p

1
[1,8]) / 2

If v_diff_below = 0 and new_diff_below ≠ 0 then:
p

2
[1,2] = (p

2
[1,1] + p

2
[1,2]) / 2

The above calculations are repeated for the rest of the pixels
along the horizontal borders, and an equivalent calculation is
done along the vertical borders. In the Open Mash implemen-
tation, these calculations are only done to the luminance com-
ponent of images stored in YUV format. As a practical matter,
the human eye detects edges based on luminance changes be-
cause chrominance changes have a negligible affect on edge
detection.

2.2 Calculating the Threshold Value
This algorithm differentiates between artificial and actual edges
in an image by comparing the magnitude of the luminance dis-
continuity to a threshold value. Discontinuities below a certain

threshold are considered artificial edges and those above that
threshold are considered natural edges.

The paper by Ramchandran, Chou, and Crouse calculated the
threshold values by estimating the quantization error of an en-
coded image. However, this calculation proved too slow for
reasonable-sized images. An NTSC video stream required ap-
proximately 90 milliseconds per frame to calculate an estimate
of the quantization error on an AMD Athlon™ 700MHz pro-
cessor3. That is three times longer than the time available to
display the frame (33 milliseconds). This process could be
improved by approximating the exponent, hyperbolic tangent,
and hyperbolic sine functions for values close to zero, but this
optimization only reduced the threshold computation time to
50 milliseconds per frame. The actual deblocking process took
20-30 milliseconds per frame on that same processor. There-
fore, the total time required for both the quantization error es-
timation and deblocking was approximately 80 milliseconds
per frame. To get the 30fps required for television, the entire
process must take no longer than one frame time.

Additionally, the threshold values being produced by the quan-
tization error estimation calculations were much higher than
the expected threshold values. This discrepancy between the
thresholds generated by Chou’s code and our adaptation of this
code to the Open Mash toolkit is probably due to a difference
in when this calculation is done. Chou calculated the quantiza-
tion error during the process of applying the DCT to the im-
age. In contrast, an Open Mash application cannot access the
image before receiving the encoded image. Therefore, any quan-
tization error calculations can only be done from data in the
encoded image and metadata provided by the encoder.

Because luminance values range from 0-255, a reasonable
threshold value should be closer to 0 than 255. If the threshold
value is close to 255, almost every luminance discontinuity in
the image will be identified as artificial. Threshold values gen-
erated by Chou’s code on the sample images were between 15-

Figure 3.
(a) A partially complete sequentially transmitted image.

(b) The final image after smoothing actual discontinuities.

20. However, our calculations on sample images and real-world
video streams resulted in threshold values exceeding 150. Us-
ing thresholds of this magnitude tended to result in almost all
pixel differences falling below the threshold value which meant
no filtering was being performed.

To reduce the threshold calculation time and the relatively large
threshold values being calculated, we decided to experiment
with a threshold value of 1000 for all of the frames being trans-
mitted. Because this value is much higher than the maximum
255, the difference across all block borders is reduced to zero
and the α value is essentially 0.5. From a visual standpoint,
blocking artifacts were noticeably reduced or eliminated at all
JPEG quality levels. (JPEG quality level refers to the com-
pression algorithm input parameter defined by the standard.)
However new artifacts were created along diagonal edges of
the image due to smoothing at block corners across actual im-
age edges.

Because the threshold value of 1000 was creating additional
image artifacts, we looked for the ideal threshold values for
specific JPEG quality levels. Peak signal-to-noise ratio (PSNR)
calculations on the Lena image produced a graph of the ideal
integer threshold values (See Figure 4).

We chose a linear scale to approximate the ideal threshold val-
ues because a single threshold value did not apply to all JPEG
quality levels and a linear threshold value could be quickly

calculated. The linear curve used in Open Mash is a compro-
mise between the calculated ideal threshold values for quality
levels below 55 and actual perceived quality for levels above
55. The ideal threshold value derived from the PSNR calcula-
tions was zero for quality levels above 55, but the image re-
quires filtering for images up to quality level 80. At quality
levels above 80, the image did not exhibit blocking artifacts to
the casual viewer. The curve is represented by the following
equation:

t
quality quality

=
− + <

18
50

29 8 80

0

* . if

otherwise

where t is the threshold and quality is the JPEG quality
the image was compressed at.

With this simple equation, the time required for the threshold
calculation is negligible and the total time required to apply
the smoothing filter is at most 30 milliseconds per frame on
the processor. At that speed, it is possible to apply the filter to
every frame of an NTSC signal transmitted at 30 frames per
second not counting decoding time.

2.3 When to Apply the Smoothing Filter
After changing the RCC algorithm so that it does not smooth
actual discontinuities, we have not encountered any images

Figure 4. Ideal integer threshold values against JPEG quality levels.

where the smoothing filter resulted in a poorer final image.
The original algorithm blurred light and dark pixels together
resulting in blurred and distorted images. Since the algorithm
used in Open Mash only blurs luminance values differing by a
small amount, this blurring and distortion no longer takes place
and all real-world and test images have benefited from the ap-
plication of the filter.

However, there are still situations where one would not want
to apply the smoothing filter for performance reasons. The ap-
plication of the filter to an NTSC sized frame required at most
30 milliseconds. This leaves a small but adequate amount of
time to display the image on the screen at 30 frames per sec-
ond. But the same computer cannot apply the smoothing filter
to multiple video streams simultaneously or while processing
other tasks. Disabling the smoothing filter on an overburdened
computer will increase frame rates in exchange for image qual-
ity.

2.4 The Source Code
The implementation of the algorithm described above may be
viewed at http://www.openmash.org/lxr/source/codec/postdct.h
and http://www.openmash.org/lxr/source/codec/postdct.cc.-
3. Evaluation

This section presents results of quality comparisons with and
without the smoothing filters.

We applied the filter to the Lena image and compared the re-
sults to the unfiltered image. As seen from the table in Figure
5, the smoothing filter slightly improves the PSNR value of
the image. It is also interesting to note that not smoothing ac-
tual image discontinuities resulted in a slightly higher PSNR
value for the image. A visual comparison shows a noticeable
improvement in the filtered image as was demonstrated by
Ramchandran, Chou, and Crouse (See Figure 6).

4. Conclusion

In summary, the Open Mash implementation of the smoothing
filter designed by Ramchandran, Chou, and Crouse provides a
noticeable improvement to image quality with acceptable per-
formance.

Further research with block transform codecs other than JPEG
should be conducted to determine appropriate threshold heu-
ristics for those streams. Experiments where the threshold cal-
culation is executed by the encoder or where the correct thresh-
old is included as part of the codec could result in improved
visual results.

An image with higher quality may also be possible by indi-
vidually applying the smoothing filter to separate areas of the
encoded image. This segmentation would allow fine-tuning of
the filter application to different areas of the image. It is also
possible to use a threshold value for vertical block borders that

ytilauQ GEPJ laedI deretliF RNSPatleD

5 34.12 26.12 36.12 02.0

01 23.52 65.52 75.52 52.0

51 55.72 97.72 97.72 42.0

02 19.82 31.92 31.92 12.0

52 68.92 00.03 99.92 31.0

03 36.03 37.03 37.03 01.0

53 32.13 23.13 03.13 70.0

04 07.13 67.13 57.13 50.0

54 61.23 91.23 81.23 20.0

05 35.23 35.23 35.23 00.0

55 19.23 19.23 19.23 00.0

06 13.33 13.33 82.33 30.0-

56 48.33 48.33 97.33 50.0-

07 33.43 33.43 72.43 60.0-

57 29.43 29.43 68.43 60.0-

Figure 5. Comparing the PSNR (dB) of the filtered image to standard JPEG decoding.

is different from the threshold value used for horizontal block
borders in the same area of the image. More advanced heuris-
tics would have to be derived to implement fine-tuning of the
filter application.

Acknowledgments

Special thanks to Jim Chou for supplying sample source code
of the deblocking algorithm and answering questions patiently
and thoroughly.

Figure 6. A visual comparison of filtered images to unfiltered images.

References
1 J. Chou, M. Crouse, K. Ramchandran. A Simple Algorithm For Removing Blocking Artifacts In Block-Transform Coded Im-
ages. IEEE Signal Processing Letters, Feb. 1998, Vol. 5, No. 2, pp. 33-35.

2 Open Mash. http://www.openmash.org/, 2002.

3 AMD Athlon™ 700MHz. http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_756,00.html, 2002.

